wbk

Alexander Puchta, M.Sc.

  • 76131 Karlsruhe
    Kaiserstraße 12

Alexander Puchta, M.Sc.

Area of Research:

  • Industry 4.0
  • Automation of machine tools
  • Automated modeling of feed axes

Projects:

  • SDM4FZI - Digitisation of brownfield production facilities for software-defined manufacturing
  • ProKI Karlsruhe - Karlsruhe Centre for AI in Machining
  • BatterI4.0 - Guide to the digitalisation of battery cell production

Curriculum Vitae:

since 01/2023 Team leader intelligent machines and components

since 07/2020

Research Associate at the Institute of Production Science (wbk) at Karlsruhe Institute of Technology (KIT)

Publications


Efficient Deployment of Machine Learning Models in Manufacturing and Industrial Environments using ROS
Frisch, M.; Baumgärtner, J.; Heider, I.; Puchta, A.; Fleischer, J.
2024. Procedia CIRP, 130, 188–193. doi:10.1016/j.procir.2024.10.074
Automated Identification of Components of Feed Axes
Puchta, A.; Frisch, M.; Fleischer, J.
2024. Production at the Leading Edge of Technology. Hrsg.: T. Bauernhansl, 143–151, Springer Nature Switzerland. doi:10.1007/978-3-031-47394-4_15
Machine Learning-Driven RUL Prediction and Uncertainty Quantification for Ball Screw Drives in a Cloud-Ready Maintenance Framework
Bott, A.; Liu, B.; Puchta, A.; Fleischer, J.
2024. Journal of Machine Engineering, 24 (3), 17 – 31. doi:10.36897/jme/192681
Jacobian-Sensitivity Approach for Identifying Machine Dynamic Model Parameters of Robots with Flexible Joints
Oexle, F.; Benfer, A.; Puchta, A.; Fleischer, J.
2024. Procedia CIRP - 10th CIRP Conference on Assembly Technology and Systems (CIRP CATS 2024), 127, 116–121. doi:10.1016/j.procir.2024.07.021
Feature Ranking for the Prediction of Energy Consumption on CNC Machining Processes
Kader, H.; Ströbel, R.; Puchta, A.; Fleischer, J.; Noack, B.; Spiliopoulou, M.
2024. 2024 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Pilsen, Czech Republic, 04-06 September 2024, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/MFI62651.2024.10705783
Black Box Adversarial Reprogramming for Time Series Feature Classification in Ball Bearings’ Remaining Useful Life Classification
Bott, A.; Schreyer, F.; Puchta, A.; Fleischer, J.
2024. Machine Learning and Knowledge Extraction, 6 (3), 1969 – 1996. doi:10.3390/make6030097
Supervised Domain Adaptation for Surface Defect Detection Leveraging Partial Data Availability
Heider, I.; Baumgärtner, J.; Bartz, P.; Puchta, A.; Fleischer, J.
2024. 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, 28th August 2024 - 1st September 2024, 4134–4139, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CASE59546.2024.10711640
Training and validation dataset 3 of milling processes for time series prediction
Ströbel, R.; Mau, M.; Kader, H.; Erd, D.; Bless, D.; Deucker, S.; Puchta, A.; Fleischer, J.; Noack, B.
2024, June 18. doi:10.35097/feFwILjideOropmh
Improving Time Series Regression Model Accuracy via Systematic Training Dataset Augmentation and Sampling
Ströbel, R.; Mau, M.; Puchta, A.; Fleischer, J.
2024. Machine Learning and Knowledge Extraction, 6 (2), 1072–1086. doi:10.3390/make6020049
Autonome Modellierung von Maschinenverhalten – Ansatz für die autonome Modellierung des dynamischen Verhaltens von Fräsmaschinen und Potenziale dieses Ansatzes in der Industrie
Oexle, F.; Netzer, M.; Deiters, L.; Puchta, A.; Fleischer, J.
2024. ZWF – Zeitschrift für wirtschaftlichen Fabrikbetrieb, 119 (5), 318–323. doi:10.1515/zwf-2024-1054
Concept for Individual and Lifetime-Adaptive Modeling of the Dynamic Behavior of Machine Tools
Oexle, F.; Heimberger, F.; Puchta, A.; Fleischer, J.
2024. Machines, 12 (2), Art.-Nr.: 123. doi:10.3390/machines12020123
Milling using two mechatronically coupled robots
Goebels, M.; Baumgärtner, J.; Fuchs, T.; Mühlbeier, E.; Puchta, A.; Fleischer, J.
2024. Procedia CIRP, 130, 867–872. doi:10.1016/j.procir.2024.10.177
Towards a Testing Framework for Machine Learning Model Deployment in Manufacturing Systems
Heider, I.; Baumgärtner, J.; Bott, A.; Ströbel, R.; Puchta, A.; Fleischer, J.
2024. 10th CIRP Conference on Assembly Technology and Systems (CIRP CATS 2024) Hrsg.: Fleischer , Jürgen; Jörg, Krüger, 127, 122–128. doi:10.1016/j.procir.2024.07.022
Sensor- and Data-Supported Sustainable Manufacturing
Fleischer, J.; Hansjosten, M.; Sawodny, J.; Puchta, A.; Gönnheimer, P.
2024. Encyclopedia of Sustainable Technologies, 648–662, Elsevier. doi:10.1016/B978-0-323-90386-8.00128-5
Camera Placement Optimization for a Novel Modular Robot Tracking System
Baumgärtner, J.; Bertschinger, B.; Hoffmann, K.; Puchta, A.; Sawodny, O.; Reichelt, S.; Fleischer, J.
2023. 2023 IEEE SENSORS, Vienna, Austria, 29 October 2023 - 01 November 2023, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SENSORS56945.2023.10324941
KI-Transferzentrum für die Industrie
Hansjosten, M.; Oexle, F.; Gönnheimer, P.; Heider, I.; Puchta, A.; Fleischer, J.
2023. wt Werkstattstechnik online
Increasing Robot Precision by Stroke Division
Baumgärtner, J.; Puchta, A.; Bertschinger, B.; Kanagalingam, G.; Sawodny, O.; Reichelt, S.; Fleischer, J.
2023. 2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 22-25 August 2023. Ed.: A. Bartoszewicz, 205–210, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/MMAR58394.2023.10242468
Auto-identification of dynamic axis models in machine tools
Puchta, A.; Riegel, V.; Barton, D.; Fleischer, J.
2023. 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering Hrsg.: Teti, Prof Roberto, 118, 175–180. doi:10.1016/j.procir.2023.06.031
Software-Defined Manufacturing for the Entire Life Cycle at Different Levels of Production
Behrendt, S.; Martin, M.; Puchta, A.; Ströbel, R.; Fisel, J.; May, M.; Gönnheimer, P.; Fleischer, J.; Lanza, G.
2023. Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains : Stuttgart Conference on Automotive Production (SCAP2022). Ed.: N. Kiefl, 25–34, Springer International Publishing. doi:10.1007/978-3-031-27933-1_3
Model-Based Diagnosis of Feed Axes with Contactless Current Sensing
Hansjosten, M.; Bott, A.; Puchta, A.; Gönnheimer, P.; Fleischer, J.
2023. M. Liewald, T. Bauernhansl, H.-C. Möhring & A. Verl (Eds.), Production at the Leading Edge of Technology: Proceedings of the 12th Concress of the German Academic Association for Production Technology (WGP), University of Stuttgart, October 2022. Hrsg.: Mathias Liewald, Thomas Bauernhansl, Hans-Christian Möhring, Alexander Verl, 314–323, Springer. doi:10.1007/978-3-031-18318-8_33
Introduction of an industrial transfer learning use case systematization for machine tools
Netzer, M.; Michelberger, J.; Puchta, A.; Verl, A.; Fleischer, J.
2023. Procedia CIRP, 120, 398 – 403. doi:10.1016/j.procir.2023.09.009
KI-Einsatz in KMU: Einstiegshürden ausräumen [Clearing entry hurdles for AI deployment in SMEs – Artificial intelligence for German SMEs]
Heider, I.; Yu, H.; Krischke, N.; Wirth, B.; Puchta, A.; Fleischer, J.
2023. wt Werkstattstechnik online, 113 (07-08), 282 – 287. doi:10.37544/1436-4980-2023-07-08-16
Framework for the Application of Industry 4.0 in Lithium-Ion Battery Cell Production
Schmied, J.; Puchta, A.; Scharmann, T.; Töpper, H.-C.; Kampker, A.; Jürgen, F.; Dröder, K.; Daub, R.
2022. Proceedings of the Conference on Production Systems and Logistics, CPSL 17th - 20th May, Vancouver 2022, 151–160, Leibniz Universität Hannover. doi:10.15488/12168
Modular and flexible Automation Middleware based on LabVIEW and OPC UA
Künzel, A.; Puchta, A.; Gönnheimer, P.; Fleischer, J.
2021. 9th Manufacturing Engineering Society International Conference (MESIC 2021) 23rd-25th June 2021, Gijόn, Spain, Art.Nr.: 012109, Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Automated Identification of Parameters in Control Systems of Machine Tools
Gönnheimer, P.; Puchta, A.; Fleischer, J.
2021. B.-A. Behrens, A. Brosius, W. Hintze, S. Ihlenfeldt & J. P. Wulfsberg (Eds.), Production at the leading edge of technology – Proceedings of the 10th Congress of the German Academic Association for Production Technology (WGP), Dresden, 23-24 September 2020. Ed.: B.-A. Behrens, 568–577, Springer-Verlag. doi:10.1007/978-3-662-62138-7_57
Seamless and modular architecture for autonomous machine tools
Fleischer, J.; Puchta, A.; Gönnheimer, P.
2021. Journal of Machine Engineering, 21 (3), 40–46. doi:10.36897/jme/141565